dummy-link

GymWrappers

Wrappers for OpenAIGym environments

Readme

Wrappers for OpenAIGym Environments

Useful for reproducing Reinforcement Learning results using Atari envs.

Some of the wrappers were adapted from https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py

Install

Pkg.clone("https://github.com/JobJob/GymWrappers.jl")

might be needed

Pkg.rm("OpenAIGym")
Pkg.clone("https://github.com/JobJob/OpenAIGym.jl")
    Pkg.checkout("OpenAIGym", "total-reward")
Pkg.rm("Reinforce")
Pkg.clone("https://github.com/JobJob/Reinforce.jl")
    Pkg.checkout("Reinforce", "total-reward")

Basic Usage

using OpenAIGym, GymWrappers
env = maybe_wrap(GymEnv("BreakoutNoFrameskip-v4"), wrap_deepmind=true))

Will wrap the env so it's essentially like Deepmind's work in Human-level control through deep reinforcement learning (Mnih et al. 2015)

Access the unwrapped env with

gymenv(env) # Julia wrapper
gymenv(env).pyenv # python env (usually wrapped with TimeLimit etc.)
gymenv(env).pyenv[:unwrapped] # fully unwrapped env

Access a particular wrapper with, e.g.:

getwrapper(MultiFrameWrapper, env)

Advanced usage

better_wrapper_specs = Dict{String, Vector{Pair{Type{T} where T <: AbstractGymWrapper, Tuple}}}(
    "Pong"=>[
        ActionSetWrapper=>([0, 2, 3],),
        RageQuitWrapper=>(7.0,),
    ],
    "Breakout"=>[
        ActionSetWrapper=>([0, 2, 3],),
    ],
    "deepmind_defaults"=>[
        # wrappers applied from inner most (top) -> outer most (bottom)
        EpisodicLifeWrapper=>(),
        GreyChanWrapper=>(2,),
        DownsizeWrapper=>((0.4, 0.525),), # (210, 160) -> (84, 84)
        MaxAndSkipWrapper=>(4,), # repeat action for 4 frames
        MultiFrameWrapper=>(4,), # stack last 4 frames
    ]
)

env = maybe_wrap(GymEnv("PongNoFrameskip-v4"),
                 wrapper_specs=better_wrapper_specs,
                 use_atari_defaults=true)

First Commit

12/17/2017

Last Touched

almost 3 years ago

Commits

8 commits

Used By: