dummy-link

Optim

Optimization functions for Julia

Readme

Optim.jl

Univariate and multivariate optimization in Julia.

Documentation PackageEvaluator Build Status Social References to cite
Build Status DOI
Build Status
Codecov branch

Optimization

Optim.jl is a package for univariate and multivariate optimization of functions. A typical example of the usage of Optim.jl is

using Optim
rosenbrock(x) =  (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2
result = optimize(rosenbrock, zeros(2), BFGS())

This minimizes the Rosenbrock function

with a = 1, b = 100 and the initial values x=0, y=0. The minimum is at (a,a^2).

The above code gives the output

Results of Optimization Algorithm
 * Algorithm: BFGS
 * Starting Point: [0.0,0.0]
 * Minimizer: [0.9999999926033423,0.9999999852005353]
 * Minimum: 5.471433e-17
 * Iterations: 16
 * Convergence: true
   * |x - x'| < 1.0e-32: false 
     |x - x'| = 3.47e-07 
   * |f(x) - f(x')| / |f(x)| < 1.0e-32: false
     |f(x) - f(x')| / |f(x)| = NaN 
   * |g(x)| < 1.0e-08: true 
     |g(x)| = 2.33e-09 
   * stopped by an increasing objective: false
   * Reached Maximum Number of Iterations: false
 * Objective Calls: 53
 * Gradient Calls: 53

For more details and options, see the documentation (stable | latest).

Installation

The package is registered in METADATA.jl and can be installed with Pkg.add.

julia> Pkg.add("Optim")

First Commit

04/04/2012

Last Touched

6 days ago

Commits

499 commits