This package contains simple routines for finding roots of continuous
scalar functions of a single real variable. The basic interface is
through the function `fzero`

which dispatches to an appropriate
algorithm based on its argument(s):

`fzero(f, a::Real, b::Real)`

and`fzero(f, bracket::Vector)`

call the`find_zero`

algorithm to find a root within the bracket`[a,b]`

. When a bracket is used with`Float64`

arguments, the algorithm is guaranteed to converge to a value`x`

with either`f(x) == 0`

or at least one of`f(prevfloat(x))*f(x) < 0`

or`f(x)*f(nextfloat(x)) < 0`

. (The function need not be continuous to apply the algorithm, as the last condition can still hold.)`fzero(f, x0::Real; order::Int=0)`

calls a derivative-free method. The default method is a bit plodding but more robust to the quality of the initial guess than some others. For faster convergence and fewer function calls, an order can be specified. Possible values are 1, 2, 5, 8, and 16. The order 2 Steffensen method can be the fastest, but is in need of a good initial guess. The order 8 method is more robust and often as fast. The higher-order methods may be faster when using`Big`

values.`fzero(f, x0::Real, bracket::Vector)`

calls a derivative-free algorithm with initial guess`x0`

with steps constrained to remain in the specified bracket.`fzeros(f, a::Real, b::Real; no_pts::Int=200)`

will split the interval`[a,b]`

into many subintervals and search for zeros in each using a bracketing method if possible. This naive algorithm will miss double zeros that lie within the same subinterval.

For polynomials either of class `Poly`

(from the `Polynomials`

package) or from functions which are of polynomial type there are
specializations:

The

`roots`

function will dispatch to the`roots`

function of the`Polynomials`

package to return all roots (including complex ones) of the polynomial.`fzeros(f::Function)`

calls`real_roots`

to find the real roots of the polynomial. For polynomials with integer coefficients, the rational roots are found first, and then numeric approximations to the remaining real roots are returned.For polynomial functions over the integers or rational numbers, the

`factor`

function will return a dictionary of factors (as`Polynomials`

) and their multiplicities.For polynomials over the real numbers, the

`multroot`

function will return the roots and their multiplicities through a dictionary. The`roots`

function from the`Polynomials`

package will find all the roots of a polynomial. Its performance degrades when the polynomial has high multiplicities. The`multroot`

function is provided to handle this case a bit better. The function follows algorithms due to Zeng, "Computing multiple roots of inexact polynomials", Math. Comp. 74 (2005), 869-903.

For historical purposes, there are implementations of Newton's method
(`newton`

), Halley's method (`halley`

), and the secant method
(`secant_method`

). For the first two, if derivatives are not
specified, they will be computed using the `ForwardDiff`

package.

```
f(x) = exp(x) - x^4
## bracketing
fzero(f, 8, 9) # 8.613169456441398
fzero(f, -10, 0) # -0.8155534188089606
fzeros(f, -10, 10) # -0.815553, 1.42961 and 8.61317
## use a derivative free method
fzero(f, 3) # 1.4296118247255558
## use a different order
fzero(sin, 3, order=16) # 3.141592653589793
## BigFloat values yield more precision
fzero(sin, BigFloat(3.0)) # 3.1415926535897932384...with 256 bits of precision
```

The `fzero`

function can be used with callable objects:

```
using SymEngine; @vars x
fzero(x^5 - x - 1, 1.0)
```

Or,

```
using Polynomials; x = variable(Int)
fzero(x^5 - x - 1, 1.0)
```

All real roots of a polynomial can be found at once:

```
f(x) = x^5 - x - 1
fzeros(f)
```

Or using an explicit polynomial:

```
using Polynomials
x = poly([0])
fzeros(x^5 -x - 1)
fzeros(x*(x-1)*(x-2)*(x^2 + x + 1))
```

The `factor`

command will factor a polynomial or polynomial function with integer or rational
coefficients over the integers:

```
factor(x -> (2x-1)^2 * (4x-3)^5) # Dict(Poly(1) => 1, Poly(-1 + 2x) =>2, Poly(-3 + 4x) => 5)
```

Polynomial root finding using `multroot`

is a bit better when multiple roots are present.

```
x = poly([0.0])
p = (x-1)^2 * (x-3)
U = multroot(p)
collect(keys(U)) # compare to roots(p)
```

Again, a polynomial function may be passed in

```
f(x) = (x-1)*(x-2)^2*(x-3)^3
multroot(f)
```

The `factor`

function will factor polynomials with rational and integer coefficients over the integers:

```
factor(f)
```

The well-known methods can be used with or without supplied
derivatives. If not specified, the `ForwardDiff`

package is used for
automatic differentiation.

```
f(x) = exp(x) - x^4
fp(x) = exp(x) - 4x^3
fpp(x) = exp(x) - 12x^2
newton(f, fp, 8) # 8.613169456441398
newton(f, 8)
halley(f, fp, fpp, 8)
halley(f, 8)
secant_method(f, 8, 8.5)
```

The automatic derivatives allow for easy solutions to finding critical points of a function.

```
## mean
as = rand(5)
function M(x)
sum([(x-a)^2 for a in as])
end
fzero(D(M), .5) - mean(as) # 0.0
## median
function m(x)
sum([abs(x-a) for a in as])
end
fzero(D(m), 0, 1) - median(as) # 0.0
```

Some additional documentation can be read here.

```
julia-observer-html-cut-paste-11__work
```

04/11/2013

27 days ago

159 commits